metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[*µ*-bis(diphenylphosphino)methane- $\kappa^2 P \cdot P'$]bis[(2.2'-bipyridine- $\kappa^2 N \cdot N'$)copper(I)] bis(tetrafluoridoborate) diethyl ether disolvate

Juan Mo,^a* Su-Mei Zhang,^a Wen-Zhong Ge^b and Jian-Hua Liu^a

^aThe College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, Henan Province 450002, People's Republic of China, and ^bCollege of Life Science & Biotechnology, Heilongjiang August First Land Reclamation University, Daqing, Heilongjiang Province 163319, People's Republic of China

Correspondence e-mail: mojuan52@126.com

Received 26 June 2007; accepted 4 July 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.008 Å; disorder in solvent or counterion; R factor = 0.045; wR factor = 0.132; data-toparameter ratio = 12.4.

The dinuclear cation of the title complex, $[Cu_2(C_{25}H_{22}P_2)_2]$ $(C_{10}H_8N_2)_2](BF_4)_2 \cdot 2C_4H_{10}O$, lies on a centre of inversion. Each Cu^I atom is coordinated by 2,2'-bipyridine (bpy) and bis(diphenylphosphino)methane (dppm) ligands, and has a distorted tetrahedral coordination geometry. The distance between the two Cu^I atoms separated by two dppm bridging ligands is 4.671 (3) Å. The solvent molecule and anion are each disordered over two positions; the site occupancy factor ratios are ca 0.56:0.44 and 0.6:0.4, respectively

Related literature

For related literature, see: Che et al. (2000); Harvey et al. (1997); Ho & Bau (1983); King et al. (1989); Pan et al. (2006); Perreault et al. (1992); Pyykkö & Mendizabal (1998); Ryu et al. (1993).

Experimental

Crystal data

$[Cu_2(C_{25}H_{22}P_2)_2(C_{10}H_8N_2)_2]$ -	$\beta = 108.970 \ (6)^{\circ}$
$(BF_4)_2 \cdot 2C_4 H_{10}O$	$V = 3746 (2) \text{ Å}^3$
$M_r = 1530.09$	Z = 2
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 14.942 (5) Å	$\mu = 0.72 \text{ mm}^{-1}$
b = 13.432 (4) Å	T = 294 (2) K
c = 19.734 (6) Å	$0.22 \times 0.18 \times 0.16 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.857, \ T_{\max} = 0.895$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	60 restraints
$wR(F^2) = 0.132$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$
6602 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
534 parameters	

19160 measured reflections

 $R_{\rm int} = 0.043$

6602 independent reflections

4337 reflections with $I > 2\sigma(I)$

Table 1

Cu1

Cu1

N1-

Selected geometric parameters (Å, °).

-N1	2.080 (3)	Cu1-P2 ⁱ	2.2268 (12)
-N2	2.109 (3)	Cu1-P1	2.2720 (12)
-Cu1-N2	78.56 (14)	P2 ⁱ -Cu1-P1	133.33 (4)

Symmetry code: (i) -x + 2, -y + 1, -z.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: SHELXL97 and XP.

We thank Henan Agricultural University and Heilongjiang August First Land Reclamation University for the generous support of this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2248).

References

- Bruker (1997). SMART (Version 5.044) and SAINT (Version 5.01). Bruker AXS Inc., Madison, Wisconsin, USA.
- Che, C.-M., Tse, M.-C., Chan, M. C. W., Cheung, K.-K., Phillips, D. L. & Leung, K.-H. (2000). J. Am. Chem. Soc. 122, 2464-2468.
- Harvey, P. D., Drouin, M. & Zhang, T. (1997). Inorg. Chem. 36, 4998-5005.

Ho, D. M. & Bau, R. (1983). Inorg. Chem. 22, 4079-4083. King, C., Wang, J.-C., Khan, M. N. I. & Fackler, J. P. (1989). Inorg. Chem. 28,

- 2145-2149. Pan, Q.-J., Zhang, H.-X., Fu, H.-G. & Yu, H.-T. (2006). Eur. J. Inorg. Chem. pp.
- 1050-1059. Perreault, D., Drouin, M., Michel, A., Miskowski, V. M., Schaefer, W. P. & Harvey, P. D. (1992). Inorg. Chem. 31, 695-702.
- Pyykkö, P. & Mendizabal, F. (1998). Inorg. Chem. 37, 3018-3025.
- Ryu, C. K., Vitale, M. & Ford, P. C. (1993). Inorg. Chem. 32, 869-874.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Acta Cryst. (2007). E63, m2096 [doi:10.1107/S1600536807032539]

Bis[μ -bis(diphenylphosphino)methane- $\kappa^2 P: P'$]bis[(2,2'-bipyridine- $\kappa^2 N, N'$)copper(I)] bis(tetrafluoridoborate) diethyl ether disolvate

J. Mo, S.-M. Zhang, W.-Z. Ge and J.-H. Liu

Comment

 d^{10} polynuclear copper complexes generally exhibit rich luminescence and recently have attracted much attention on both a theoretical and a spectroscopic level (Pan *et al.*, 2006; Pyykkö & Mendizabal, 1998; Ryu *et al.*, 1993). A series of luminescent dinuclear d^{10} complexes with bridging phosphane ligands have been studied (Harvey *et al.*, 1997; King *et al.*, 1989; Perreault *et al.*, 1992; Che *et al.*, 2000). Here, we report crystal structure of [Cu₂(dppm)₂(bpy)₂](BF₄)₂·2C₄H₁₀O, (I).

The Cu atom in (I) (Fig. 1) has a distorted tetrahedral coordination geometry involving two N atoms of 2,2'-bipyridine ligand and two P atoms of two (diphenylphosphino)methane ligand. The Cu—N bond lengths are 2.080 (3) and 2.109 (3) Å, while the Cu—P bonds are 2.272 (1) and 2.227 (1)Å [2 - x, 1 - y, -z](Table 1). The two Cu^I ions in (I) are doubly bridged by two (diphenylphosphino)methane ligands. There are no Cu—Cu bonds, as the measured distance (r_{Cu} … c_u = 4.471 (3) Å) is greater than the sum of the van der Waals radii (r_{vdW} (Cu) = 1.40 Å).

Experimental

A 10 ml me thanolic solution of 2,2'-bipyridine (0.078 g, 0.5 mmol, *i.e.* large excess) was added to a 20 mL me thanolic suspension of $[Cu_3(dppm)_3(OH)](BF_4)_2$ (0.0767 g, 0.05 mmol) (Ho & Bau, 1983) under N₂ atmosphere. The mixture was stirred for 2 days. The filtrate was kept in diethyl ether atmosphere for two weeks, yellow crystals suitable for X-ray diffraction were formed.

Refinement

All hydrogen atoms were generated geometrically (C—H bond lengths fixed at 0.93 Å), assigned appropriated isotropic thermal parameters, $U_{iso}(H) = 1.2U_{eq}(C)$. The (BF₄)⁻ anions are disordered, F—B distances were restrained to 1.36 (1) Å. The ethyl ether molecules are disordered over two sites, the C···O and C···C distances were restrained to ensure a reasonable geometry.

Figures

Fig. 1. Molecular structure of the title compound showing the atom-numbering scheme and displacement ellipsoids drawn at the 40% probability level. The symmetry code for the unlabelled atoms is (2 - x, 1 - y, -z). Free $(BF_4)^-$ anions are not shown.

 $Bis[\mu-bis(diphenylphosphino)methane-\kappa^2 P:P']$ $bis[(2,2'-bipyridine-\kappa^2 N,N')copper(I)]$ bis(tetrafluoridoborate) diethyl ether disolvate

Crystal data

 $[Cu_2(C_{25}H_{22}P_2)_2(C_{10}H_8N_2)_2](BF_4)_2\cdot 2C_4H_{10}O$ $F_{000} = 1584$ $M_r = 1530.09$ $D_{\rm x} = 1.357 {\rm Mg m}^{-3}$ Mo Kα radiation Monoclinic, $P2_1/n$ $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 2yn Cell parameters from 2605 reflections a = 14.942 (5) Å $\theta = 3.0 - 26.4^{\circ}$ *b* = 13.432 (4) Å $\mu = 0.72 \text{ mm}^{-1}$ c = 19.734 (6) Å T = 294 (2) K $\beta = 108.970 \ (6)^{\circ}$ Block, yellow $0.22\times0.18\times0.16~mm$ $V = 3746 (2) \text{ Å}^3$ Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer	6602 independent reflections
Radiation source: fine-focus sealed tube	4337 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.043$
T = 294(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
φ and ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -17 \rightarrow 17$
$T_{\min} = 0.857, \ T_{\max} = 0.895$	$k = -15 \rightarrow 15$
19160 measured reflections	$l = -23 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H-atom parameters constrained
$wR(F^2) = 0.132$	$w = 1/[\sigma^2(F_o^2) + (0.0582P)^2 + 2.5517P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\text{max}} = 0.002$
6602 reflections	$\Delta \rho_{max} = 0.40 \text{ e} \text{ Å}^{-3}$
534 parameters	$\Delta \rho_{min} = -0.31 \text{ e } \text{\AA}^{-3}$
60 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Cu1	0.89350 (3)	0.40826 (4)	0.03928 (2)	0.04066 (16)	
P1	1.03081 (7)	0.45536 (8)	0.12368 (5)	0.0379 (2)	
P2	1.14667 (7)	0.62233 (7)	0.07772 (5)	0.0375 (2)	
N1	0.7958 (2)	0.4649 (3)	0.08405 (17)	0.0475 (8)	
N2	0.8587 (2)	0.2798 (3)	0.08685 (16)	0.0490 (8)	
C1	1.0103 (3)	0.4376 (3)	0.20948 (19)	0.0435 (10)	
C2	1.0196 (3)	0.3430 (4)	0.2392 (2)	0.0608 (12)	
H2	1.0435	0.2915	0.2186	0.073*	
C3	0.9941 (4)	0.3247 (5)	0.2986 (3)	0.0835 (17)	
Н3	1.0008	0.2610	0.3180	0.100*	
C4	0.9592 (5)	0.3989 (6)	0.3295 (3)	0.102 (2)	
H4	0.9422	0.3861	0.3700	0.122*	
C5	0.9491 (4)	0.4928 (5)	0.3008 (3)	0.0912 (18)	
Н5	0.9249	0.5435	0.3218	0.109*	
C6	0.9749 (3)	0.5131 (4)	0.2402 (2)	0.0611 (12)	
H6	0.9681	0.5769	0.2209	0.073*	
C7	1.1341 (3)	0.3783 (3)	0.1327 (2)	0.0433 (9)	
C8	1.1349 (3)	0.3209 (3)	0.0746 (2)	0.0602 (12)	
H8	1.0836	0.3226	0.0325	0.072*	
C9	1.2120 (4)	0.2610 (4)	0.0791 (3)	0.0836 (16)	
H9	1.2126	0.2226	0.0400	0.100*	
C10	1.2877 (4)	0.2588 (4)	0.1416 (4)	0.0833 (16)	
H10	1.3396	0.2186	0.1446	0.100*	
C11	1.2874 (3)	0.3146 (4)	0.1988 (3)	0.0683 (14)	
H11	1.3391	0.3126	0.2407	0.082*	
C12	1.2114 (3)	0.3739 (3)	0.1953 (2)	0.0522 (11)	
H12	1.2115	0.4115	0.2349	0.063*	
C13	1.0725 (3)	0.5853 (3)	0.13178 (19)	0.0419 (9)	
H13A	1.0174	0.6285	0.1191	0.050*	
H13B	1.1079	0.5978	0.1817	0.050*	
C14	1.2651 (3)	0.5858 (3)	0.1340 (2)	0.0412 (9)	
C15	1.3211 (3)	0.5318 (4)	0.1053 (2)	0.0602 (12)	
H15	1.2986	0.5141	0.0572	0.072*	

C16	1.4115 (3)	0.5026 (4)	0.1473 (3)	0.0801 (16)	
H16	1.4490	0.4651	0.1275	0.096*	
C17	1.4449 (4)	0.5295 (4)	0.2179 (3)	0.0793 (16)	
H17	1.5051	0.5100	0.2461	0.095*	
C18	1.3902 (3)	0.5849 (4)	0.2470 (3)	0.0691 (14)	
H18	1.4137	0.6037	0.2949	0.083*	
C19	1.3001 (3)	0.6131 (3)	0.2056 (2)	0.0569 (11)	
H19	1.2628	0.6504	0.2258	0.068*	
C20	1.1524 (3)	0.7576 (3)	0.08989 (19)	0.0441 (10)	
C21	1.2357 (3)	0.8070 (3)	0.0957 (2)	0.0610 (12)	
H21	1.2891	0.7704	0.0972	0.073*	
C22	1.2411 (4)	0.9089 (4)	0.0993 (3)	0.0800 (16)	
H22	1.2980	0.9410	0.1039	0.096*	
C23	1.1627 (6)	0.9626 (4)	0.0960 (3)	0.099 (2)	
H23	1.1659	1.0317	0.0978	0.118*	
C24	1.0790 (5)	0.9161 (4)	0.0902 (3)	0.0911 (18)	
H24	1.0258	0.9535	0.0882	0.109*	
C25	1.0738 (4)	0.8137 (3)	0.0875 (3)	0.0640 (13)	
H25	1.0170	0.7822	0.0840	0.077*	
C26	0.7694 (3)	0.5600 (4)	0.0828 (2)	0.0627 (12)	
H26	0.7902	0.6048	0.0552	0.075*	
C27	0.7126 (4)	0.5950 (5)	0.1205 (3)	0.0807 (16)	
H27	0.6944	0.6615	0.1180	0.097*	
C28	0.6842 (4)	0.5284 (6)	0.1613 (3)	0.094 (2)	
H28	0.6459	0.5495	0.1874	0.113*	
C29	0.7113 (4)	0.4309 (5)	0.1644 (3)	0.0818 (17)	
H29	0.6925	0.3859	0.1930	0.098*	
C30	0.7671 (3)	0.4002 (4)	0.1244 (2)	0.0553 (12)	
C31	0.7986 (3)	0.2970 (4)	0.1233 (2)	0.0541 (11)	
C32	0.7680 (4)	0.2190 (5)	0.1572 (3)	0.0801 (16)	
H32	0.7270	0.2310	0.1831	0.096*	
C33	0.7994 (4)	0.1252 (5)	0.1518 (3)	0.0911 (19)	
Н33	0.7784	0.0724	0.1732	0.109*	
C34	0.8606 (4)	0.1078 (4)	0.1155 (3)	0.0785 (16)	
H34	0.8828	0.0439	0.1122	0.094*	
C35	0.8889 (3)	0.1871 (3)	0.0839 (2)	0.0601 (12)	
H35	0.9312	0.1757	0.0590	0.072*	
B1	0.3873 (4)	0.7013 (4)	0.6889 (4)	0.104 (3)	
F1	0.4849 (4)	0.7197 (6)	0.7232 (5)	0.147 (4)	0.610 (11)
F2	0.3676 (7)	0.7312 (8)	0.6190 (4)	0.122 (3)	0.610 (11)
F3	0.3700 (6)	0.6049 (4)	0.6941 (4)	0.112 (3)	0.610 (11)
F4	0.3431 (5)	0.7569 (5)	0.7258 (3)	0.105 (3)	0.610 (11)
F1'	0.3974 (9)	0.7667 (8)	0.6416 (7)	0.097 (4)	0.390 (11)
F2'	0.2924 (7)	0.6907 (12)	0.6820 (9)	0.178 (7)	0.390 (11)
F3'	0.4112 (11)	0.6097 (7)	0.6678 (8)	0.145 (6)	0.390 (11)
F4'	0.4378 (13)	0.7177 (14)	0.7567 (6)	0.250 (11)	0.390 (11)
01	0.9395 (6)	0.3004 (6)	0.4884 (4)	0.111 (4)	0.565 (13)
C36	0.8268 (11)	0.4325 (12)	0.4737 (10)	0.154 (7)	0.565 (13)
H36A	0.8128	0.4911	0.4963	0.231*	0.565 (13)

H36B	0.7763	0.3853	0.4663	0.231*	0.565 (13)
H36C	0.8334	0.4501	0.4284	0.231*	0.565 (13)
C37	0.9196 (10)	0.3860 (10)	0.5220 (8)	0.132 (6)	0.565 (13)
H37A	0.9709	0.4336	0.5302	0.158*	0.565 (13)
H37B	0.9136	0.3684	0.5680	0.158*	0.565 (13)
C38	1.0271 (10)	0.2522 (11)	0.5241 (11)	0.174 (9)	0.565 (13)
H38A	1.0383	0.2524	0.5753	0.208*	0.565 (13)
H38B	1.0783	0.2884	0.5151	0.208*	0.565 (13)
C39	1.0260 (11)	0.1472 (10)	0.4984 (10)	0.140 (7)	0.565 (13)
H39A	1.0853	0.1158	0.5234	0.210*	0.565 (13)
H39B	1.0166	0.1472	0.4479	0.210*	0.565 (13)
H39C	0.9755	0.1113	0.5075	0.210*	0.565 (13)
O1'	0.9797 (12)	0.3255 (13)	0.5339 (14)	0.282 (14)	0.435 (13)
C36'	0.878 (2)	0.4681 (16)	0.486 (2)	0.26 (2)	0.435 (13)
H36D	0.8131	0.4894	0.4724	0.388*	0.435 (13)
H36E	0.9017	0.4773	0.4472	0.388*	0.435 (13)
H36F	0.9149	0.5066	0.5268	0.388*	0.435 (13)
C37'	0.8839 (11)	0.3579 (14)	0.5071 (14)	0.132 (9)	0.435 (13)
H37C	0.8539	0.3476	0.5433	0.159*	0.435 (13)
H37D	0.8501	0.3185	0.4654	0.159*	0.435 (13)
C38'	0.9885 (14)	0.2185 (13)	0.5302 (11)	0.136 (9)	0.435 (13)
H38C	0.9265	0.1892	0.5082	0.163*	0.435 (13)
H38D	1.0148	0.1916	0.5782	0.163*	0.435 (13)
C39'	1.0519 (12)	0.1928 (14)	0.4870 (8)	0.095 (6)	0.435 (13)
H39D	1.0608	0.1220	0.4874	0.142*	0.435 (13)
H39E	1.1120	0.2250	0.5075	0.142*	0.435 (13)
H39F	1.0232	0.2151	0.4385	0.142*	0.435 (13)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0417 (3)	0.0494 (3)	0.0327 (3)	-0.0030 (2)	0.0147 (2)	0.0003 (2)
P1	0.0407 (5)	0.0450 (6)	0.0298 (5)	-0.0031 (4)	0.0139 (4)	0.0015 (4)
P2	0.0400 (5)	0.0418 (6)	0.0323 (5)	-0.0020 (4)	0.0139 (4)	0.0004 (4)
N1	0.0436 (18)	0.059 (2)	0.0419 (19)	-0.0036 (17)	0.0164 (16)	-0.0069 (16)
N2	0.054 (2)	0.056 (2)	0.0365 (18)	-0.0080 (17)	0.0140 (16)	0.0053 (16)
C1	0.042 (2)	0.062 (3)	0.0276 (19)	-0.0058 (19)	0.0123 (17)	0.0022 (18)
C2	0.065 (3)	0.077 (3)	0.042 (2)	-0.006 (2)	0.019 (2)	0.017 (2)
C3	0.095 (4)	0.102 (5)	0.056 (3)	-0.007 (3)	0.029 (3)	0.028 (3)
C4	0.117 (5)	0.149 (7)	0.057 (3)	-0.011 (5)	0.052 (4)	0.027 (4)
C5	0.101 (4)	0.130 (6)	0.060 (3)	0.003 (4)	0.049 (3)	-0.013 (4)
C6	0.066 (3)	0.079 (3)	0.044 (2)	0.000 (2)	0.026 (2)	0.000 (2)
C7	0.047 (2)	0.042 (2)	0.045 (2)	-0.0052 (18)	0.0205 (19)	0.0032 (18)
C8	0.061 (3)	0.064 (3)	0.057 (3)	0.006 (2)	0.021 (2)	-0.005 (2)
С9	0.093 (4)	0.072 (4)	0.095 (4)	0.019 (3)	0.043 (4)	-0.014 (3)
C10	0.071 (4)	0.071 (4)	0.117 (5)	0.026 (3)	0.042 (4)	0.019 (3)
C11	0.056 (3)	0.076 (4)	0.070 (3)	0.010 (3)	0.016 (3)	0.028 (3)
C12	0.049 (2)	0.061 (3)	0.046 (2)	0.000 (2)	0.013 (2)	0.013 (2)

C13	0.049 (2)	0.045 (2)	0.037 (2)	-0.0013 (18)	0.0205 (18)	-0.0009 (17)
C14	0.041 (2)	0.043 (2)	0.039 (2)	-0.0022 (18)	0.0124 (17)	0.0020 (18)
C15	0.046 (2)	0.077 (3)	0.053 (3)	0.002 (2)	0.010 (2)	-0.001 (2)
C16	0.052 (3)	0.099 (4)	0.085 (4)	0.015 (3)	0.016 (3)	0.001 (3)
C17	0.050 (3)	0.088 (4)	0.080 (4)	-0.002 (3)	-0.006 (3)	0.016 (3)
C18	0.064 (3)	0.075 (3)	0.049 (3)	-0.013 (3)	-0.008 (2)	0.010(2)
C19	0.064 (3)	0.057 (3)	0.046 (2)	-0.008(2)	0.012 (2)	-0.005 (2)
C20	0.060 (3)	0.043 (2)	0.033 (2)	-0.004 (2)	0.0193 (19)	-0.0005 (17)
C21	0.069 (3)	0.053 (3)	0.059 (3)	-0.016 (2)	0.018 (2)	0.006 (2)
C22	0.102 (4)	0.058 (3)	0.082 (4)	-0.030 (3)	0.031 (3)	-0.001 (3)
C23	0.168 (7)	0.046 (3)	0.101 (5)	-0.016 (4)	0.070 (5)	-0.001 (3)
C24	0.131 (5)	0.052 (3)	0.113 (5)	0.017 (3)	0.072 (4)	-0.001 (3)
C25	0.086 (3)	0.047 (3)	0.074 (3)	0.002 (2)	0.046 (3)	-0.004 (2)
C26	0.052 (3)	0.074 (4)	0.060 (3)	-0.003 (2)	0.015 (2)	-0.018 (2)
C27	0.064 (3)	0.092 (4)	0.090 (4)	0.004 (3)	0.029 (3)	-0.035 (3)
C28	0.063 (3)	0.139 (6)	0.094 (4)	-0.004 (4)	0.042 (3)	-0.046 (4)
C29	0.061 (3)	0.124 (5)	0.073 (3)	-0.019 (3)	0.040 (3)	-0.017 (3)
C30	0.040 (2)	0.089 (4)	0.039 (2)	-0.015 (2)	0.0163 (19)	-0.009 (2)
C31	0.046 (2)	0.076 (3)	0.040 (2)	-0.016 (2)	0.014 (2)	0.006 (2)
C32	0.068 (3)	0.107 (5)	0.071 (3)	-0.015 (3)	0.031 (3)	0.020 (3)
C33	0.089 (4)	0.090 (5)	0.091 (4)	-0.023 (4)	0.023 (4)	0.035 (4)
C34	0.090 (4)	0.063 (3)	0.072 (3)	0.000 (3)	0.013 (3)	0.025 (3)
C35	0.068 (3)	0.060 (3)	0.048 (3)	-0.001 (2)	0.012 (2)	0.012 (2)
B1	0.094 (6)	0.087 (6)	0.145 (8)	0.034 (5)	0.057 (6)	0.046 (6)
F1	0.103 (5)	0.167 (6)	0.176 (7)	-0.011 (4)	0.051 (5)	-0.010 (5)
F2	0.131 (7)	0.137 (7)	0.113 (5)	0.028 (5)	0.057 (5)	0.022 (5)
F3	0.136 (6)	0.061 (4)	0.147 (6)	-0.006 (3)	0.055 (4)	0.009 (3)
F4	0.133 (6)	0.105 (5)	0.108 (5)	0.040 (4)	0.080 (4)	0.024 (3)
F1'	0.097 (7)	0.072 (6)	0.142 (9)	-0.001 (5)	0.067 (6)	0.023 (6)
F2'	0.161 (9)	0.189 (11)	0.207 (11)	-0.017 (8)	0.093 (8)	0.043 (8)
F3'	0.169 (9)	0.090 (7)	0.180 (10)	0.013 (6)	0.063 (7)	0.009 (6)
F4'	0.261 (14)	0.261 (14)	0.235 (13)	-0.019 (10)	0.092 (9)	-0.018 (9)
01	0.116 (6)	0.120 (7)	0.077 (5)	0.026 (5)	0.003 (4)	0.013 (4)
C36	0.161 (10)	0.152 (10)	0.162 (10)	0.022 (8)	0.070 (8)	-0.010 (8)
C37	0.140 (10)	0.135 (10)	0.108 (9)	-0.039 (8)	0.024 (8)	0.009 (8)
C38	0.168 (12)	0.172 (12)	0.168 (11)	0.004 (9)	0.036 (9)	0.006 (9)
C39	0.128 (10)	0.150 (10)	0.133 (10)	0.013 (8)	0.030 (7)	0.011 (8)
01'	0.281 (16)	0.279 (16)	0.283 (17)	0.025 (10)	0.088 (10)	-0.028 (10)
C36'	0.25 (2)	0.27 (2)	0.25 (2)	0.008 (10)	0.092 (12)	-0.009 (10)
C37'	0.127 (12)	0.173 (13)	0.112 (11)	-0.034 (9)	0.060 (9)	-0.001 (9)
C38'	0.139 (11)	0.124 (12)	0.133 (11)	-0.022 (9)	0.030 (9)	0.014 (8)
C39'	0.099 (9)	0.087 (9)	0.084 (8)	0.015 (7)	0.009 (7)	0.017 (7)

Geometric parameters (Å, °)

Cu1—N1	2.080 (3)	С23—Н23	0.9300
Cu1—N2	2.109 (3)	C24—C25	1.377 (7)
Cu1—P2 ⁱ	2.2268 (12)	C24—H24	0.9300
Cu1—P1	2.2720 (12)	C25—H25	0.9300

P1—C7	1.819 (4)	C26—C27	1.380 (7)
P1—C1	1.831 (4)	С26—Н26	0.9300
P1—C13	1.843 (4)	C27—C28	1.361 (8)
P2—C14	1.824 (4)	С27—Н27	0.9300
P2—C20	1.831 (4)	C28—C29	1.366 (8)
P2-C13	1.839 (4)	C28—H28	0.9300
P2—Cu1 ⁱ	2.2267 (12)	C29—C30	1.385 (6)
N1—C26	1.335 (6)	С29—Н29	0.9300
N1—C30	1.340 (5)	C30—C31	1.467 (6)
N2—C35	1.331 (5)	C31—C32	1.398 (6)
N2—C31	1.340 (5)	C32—C33	1.361 (8)
C1—C6	1.372 (6)	С32—Н32	0.9300
C1—C2	1.387 (6)	C33—C34	1.353 (8)
C2—C3	1.367 (6)	С33—Н33	0.9300
С2—Н2	0.9300	C34—C35	1.370 (6)
C3—C4	1.357 (8)	С34—Н34	0.9300
С3—Н3	0.9300	С35—Н35	0.9300
C4—C5	1.371 (8)	B1—F4'	1.324 (9)
C4—H4	0.9300	B1—F1'	1.325 (9)
C5—C6	1.397 (6)	B1—F3	1.331 (7)
С5—Н5	0.9300	B1—F4	1.356 (7)
С6—Н6	0.9300	B1—F2	1.374 (8)
С7—С8	1.385 (6)	B1—F3'	1.383 (9)
C7—C12	1.391 (5)	B1—F2'	1.388 (9)
C8—C9	1.383 (6)	B1—F1	1.416 (7)
С8—Н8	0.9300	O1—C37	1.408 (9)
C9—C10	1.377 (7)	O1—C38	1.425 (9)
С9—Н9	0.9300	C36—C37	1.537 (9)
C10—C11	1.357 (7)	С36—Н36А	0.9600
C10—H10	0.9300	С36—Н36В	0.9600
C11—C12	1.370 (6)	С36—Н36С	0.9600
C11—H11	0.9300	С37—Н37А	0.9700
C12—H12	0.9300	С37—Н37В	0.9700
C13—H13A	0.9700	C38—C39	1.497 (10)
C13—H13B	0.9700	C38—H38A	0.9700
C14—C15	1.361 (6)	C38—H38B	0.9700
C14—C19	1.388 (5)	С39—Н39А	0.9600
C15—C16	1.392 (6)	С39—Н39В	0.9600
С15—Н15	0.9300	С39—Н39С	0.9600
C16—C17	1.366 (7)	O1'—C37'	1.424 (10)
C16—H16	0.9300	O1'—C38'	1.446 (10)
C17—C18	1.361 (7)	C36'—C37'	1.530 (10)
C17—H17	0.9300	C36'—H36D	0.9600
C18—C19	1.382 (6)	С36'—Н36Е	0.9600
C18—H18	0.9300	C36'—H36F	0.9600
C19—H19	0.9300	С37'—Н37С	0.9700
C20—C21	1.382 (6)	C37'—H37D	0.9700
C20—C25	1.384 (6)	C38'—C39'	1.507 (10)
C21—C22	1.372 (7)	C38'—H38C	0.9700

C21—H21	0.9300	C38'—H38D	0.9700
C22—C23	1.360 (8)	C39'—H39D	0.9600
C22—H22	0.9300	С39'—Н39Е	0.9600
C23—C24	1.369 (8)	C39'—H39F	0.9600
N1—Cu1—N2	78.56 (14)	C28—C27—C26	117.3 (6)
N1—Cu1—P2 ⁱ	121.20 (9)	С28—С27—Н27	121.3
N2—Cu1—P2 ⁱ	106.75 (9)	С26—С27—Н27	121.3
N1—Cu1—P1	100.25 (9)	C27—C28—C29	120.9 (5)
N2—Cu1—P1	101.31 (9)	C27—C28—H28	119.6
P2 ⁱ —Cu1—P1	133.33 (4)	C29—C28—H28	119.6
C7—P1—C1	103.12 (18)	C28—C29—C30	118.9 (6)
C7—P1—C13	106.19 (17)	С28—С29—Н29	120.5
C1—P1—C13	101.34 (18)	С30—С29—Н29	120.5
C7—P1—Cu1	116.65 (13)	N1—C30—C29	121.0 (5)
C1—P1—Cu1	105.00 (12)	N1-C30-C31	115.9 (4)
C13—P1—Cu1	121.76 (13)	C29—C30—C31	123.1 (5)
C14—P2—C20	101.10 (18)	N2—C31—C32	120.5 (5)
C14—P2—C13	102.87 (18)	N2—C31—C30	116.5 (4)
C20—P2—C13	101.71 (17)	C32—C31—C30	123.0 (4)
C14—P2—Cu1 ⁱ	117.56 (13)	C33—C32—C31	118.8 (5)
C20—P2—Cu1 ⁱ	107.72 (12)	С33—С32—Н32	120.6
C13—P2—Cu1 ⁱ	122.78 (13)	C31—C32—H32	120.6
C26—N1—C30	118.8 (4)	C34—C33—C32	120.8 (5)
C26—N1—Cu1	125.9 (3)	С34—С33—Н33	119.6
C30—N1—Cu1	114.8 (3)	С32—С33—Н33	119.6
C35—N2—C31	118.7 (4)	C33—C34—C35	117.9 (5)
C35—N2—Cu1	127.5 (3)	С33—С34—Н34	121.0
C31—N2—Cu1	113.7 (3)	C35—C34—H34	121.0
C6—C1—C2	119.3 (4)	N2—C35—C34	123.2 (5)
C6—C1—P1	121.1 (3)	N2—C35—H35	118.4
C2—C1—P1	119.1 (3)	С34—С35—Н35	118.4
C3—C2—C1	120.6 (5)	F4'—B1—F1'	116.4 (9)
C3—C2—H2	119.7	F4'—B1—F3	98.3 (10)
C1—C2—H2	119.7	F1'—B1—F3	140.2 (8)
C4—C3—C2	120.5 (5)	F4'—B1—F4	65.3 (9)
С4—С3—Н3	119.8	F1'—B1—F4	101.6 (7)
С2—С3—Н3	119.8	F3—B1—F4	110.7 (6)
C3—C4—C5	119.8 (5)	F4'—B1—F2	146.4 (10)
C3—C4—H4	120.1	F1'—B1—F2	30.1 (6)
С5—С4—Н4	120.1	F3—B1—F2	112.2 (7)
C4—C5—C6	120.6 (6)	F4—B1—F2	113.3 (6)
C4—C5—H5	119.7	F4'—B1—F3'	109.5 (9)
С6—С5—Н5	119.7	F1'—B1—F3'	106.2 (8)
C1—C6—C5	119.2 (5)	F3—B1—F3'	39.9 (6)
С1—С6—Н6	120.4	F4—B1—F3'	150.5 (8)
С5—С6—Н6	120.4	F2—B1—F3'	87.1 (8)
C8—C7—C12	118.9 (4)	F4'—B1—F2'	110.1 (9)

C8—C7—P1	118.1 (3)	F1'—B1—F2'	110.2 (8)
C12—C7—P1	122.9 (3)	F3—B1—F2'	71.9 (7)
C9—C8—C7	120.1 (5)	F4—B1—F2'	56.5 (7)
С9—С8—Н8	119.9	F2—B1—F2'	93.0 (8)
С7—С8—Н8	119.9	F3'—B1—F2'	103.5 (8)
C10C9C8	119.6 (5)	F4'—B1—F1	47.8 (8)
С10—С9—Н9	120.2	F1'—B1—F1	83.5 (7)
С8—С9—Н9	120.2	F3—B1—F1	109.2 (6)
C11—C10—C9	120.6 (5)	F4—B1—F1	104.6 (6)
C11-C10-H10	119.7	F2—B1—F1	106.3 (7)
C9—C10—H10	119.7	F3'—B1—F1	88.5 (7)
C10-C11-C12	120.4 (5)	F2'—B1—F1	157.8 (9)
C10-C11-H11	119.8	C37—O1—C38	116.0 (8)
C12—C11—H11	119.8	С37—С36—Н36А	109.5
C11—C12—C7	120.3 (4)	С37—С36—Н36В	109.5
C11—C12—H12	119.8	H36A—C36—H36B	109.5
С7—С12—Н12	119.8	С37—С36—Н36С	109.5
P2—C13—P1	117.1 (2)	H36A—C36—H36C	109.5
P2—C13—H13A	108.0	H36B—C36—H36C	109.5
P1—C13—H13A	108.0	O1—C37—C36	109.0 (9)
Р2—С13—Н13В	108.0	O1—C37—H37A	109.9
P1—C13—H13B	108.0	С36—С37—Н37А	109.9
H13A—C13—H13B	107.3	O1—C37—H37B	109.9
C15—C14—C19	119.0 (4)	С36—С37—Н37В	109.9
C15-C14-P2	119.7 (3)	Н37А—С37—Н37В	108.3
C19—C14—P2	121.3 (3)	O1—C38—C39	110.7 (9)
C14—C15—C16	120.7 (4)	O1—C38—H38A	109.5
C14—C15—H15	119.6	С39—С38—Н38А	109.5
С16—С15—Н15	119.6	O1—C38—H38B	109.5
C17—C16—C15	119.6 (5)	С39—С38—Н38В	109.5
С17—С16—Н16	120.2	H38A—C38—H38B	108.1
C15—C16—H16	120.2	С38—С39—Н39А	109.5
C18—C17—C16	120.3 (5)	С38—С39—Н39В	109.5
C18—C17—H17	119.8	H39A—C39—H39B	109.5
С16—С17—Н17	119.8	С38—С39—Н39С	109.5
C17—C18—C19	120.2 (5)	Н39А—С39—Н39С	109.5
C17-C18-H18	119.9	H39B—C39—H39C	109.5
C19-C18-H18	119.9	C37'—O1'—C38'	112.4 (11)
C18—C19—C14	120.1 (5)	C37'—C36'—H36D	109.5
C18—C19—H19	119.9	С37'—С36'—Н36Е	109.5
C14—C19—H19	119.9	H36D—C36'—H36E	109.5
C21—C20—C25	118.2 (4)	C37'—C36'—H36F	109.5
C21—C20—P2	119.3 (3)	H36D—C36'—H36F	109.5
C25—C20—P2	122.3 (3)	H36E—C36'—H36F	109.5
C22—C21—C20	121.4 (5)	O1'—C37'—C36'	111.1 (11)
C22—C21—H21	119.3	O1'—C37'—H37C	109.4
C20—C21—H21	119.3	С36'—С37'—Н37С	109.4
C23—C22—C21	119.3 (5)	O1'—C37'—H37D	109.4
C23—C22—H22	120.3	C36'—C37'—H37D	109.4

C21—C22—H22	120.3	H37C—C37'—H37D	108.0
C22—C23—C24	120.8 (5)	O1'—C38'—C39'	109.8 (10)
С22—С23—Н23	119.6	O1'—C38'—H38C	109.7
С24—С23—Н23	119.6	C39'—C38'—H38C	109.7
C23—C24—C25	119.8 (6)	O1'—C38'—H38D	109.7
C23—C24—H24	120.1	C39'—C38'—H38D	109.7
C25—C24—H24	120.1	H38C—C38'—H38D	108.2
C24—C25—C20	120.4 (5)	C38'—C39'—H39D	109.5
С24—С25—Н25	119.8	С38'—С39'—Н39Е	109.5
C20—C25—H25	119.8	H39D—C39'—H39E	109.5
N1-C26-C27	123.1 (5)	C38'—C39'—H39F	109.5
N1—C26—H26	118.5	H39D—C39'—H39F	109.5
C27—C26—H26	118.5	H39E—C39'—H39F	109.5
N1—Cu1—P1—C7	152.08 (17)	Cu1 ⁱ —P2—C14—C15	-7.4 (4)
N2—Cu1—P1—C7	71.83 (17)	C20-P2-C14-C19	55.0 (4)
P2 ⁱ —Cu1—P1—C7	-54.52 (15)	C13—P2—C14—C19	-49.9 (4)
N1—Cu1—P1—C1	38.66 (18)	Cu1 ⁱ —P2—C14—C19	171.9 (3)
N2—Cu1—P1—C1	-41.59 (18)	C19—C14—C15—C16	1.1 (7)
P2 ⁱ —Cu1—P1—C1	-167.94 (15)	P2-C14-C15-C16	-179.7 (4)
N1—Cu1—P1—C13	-75.26 (17)	C14-C15-C16-C17	-0.7 (8)
N2—Cu1—P1—C13	-155.50 (17)	C15-C16-C17-C18	-0.3 (8)
P2 ⁱ —Cu1—P1—C13	78.15 (15)	C16-C17-C18-C19	0.9 (8)
N2—Cu1—N1—C26	177.6 (3)	C17—C18—C19—C14	-0.5 (7)
P2 ⁱ —Cu1—N1—C26	-79.6 (3)	C15—C14—C19—C18	-0.5 (6)
P1—Cu1—N1—C26	78.0 (3)	P2-C14-C19-C18	-179.7 (3)
N2—Cu1—N1—C30	5.9 (3)	C14—P2—C20—C21	36.8 (4)
P2 ⁱ —Cu1—N1—C30	108.7 (3)	C13—P2—C20—C21	142.6 (3)
P1—Cu1—N1—C30	-93.7 (3)	Cu1 ⁱ —P2—C20—C21	-87.1 (3)
N1—Cu1—N2—C35	176.5 (4)	C14—P2—C20—C25	-148.7 (3)
P2 ⁱ —Cu1—N2—C35	57.1 (3)	C13—P2—C20—C25	-42.9 (4)
P1—Cu1—N2—C35	-85.2 (3)	Cu1 ⁱ —P2—C20—C25	87.4 (3)
N1—Cu1—N2—C31	-3.0 (3)	C25—C20—C21—C22	0.2 (6)
P2 ⁱ —Cu1—N2—C31	-122.4 (2)	P2-C20-C21-C22	174.9 (4)
P1—Cu1—N2—C31	95.3 (3)	C20-C21-C22-C23	-1.0 (8)
C7—P1—C1—C6	146.7 (3)	C21—C22—C23—C24	0.9 (9)
C13—P1—C1—C6	36.9 (4)	C22—C23—C24—C25	-0.1 (10)
Cu1—P1—C1—C6	-90.7 (3)	C23—C24—C25—C20	-0.6 (8)
C7—P1—C1—C2	-41.4 (4)	C21—C20—C25—C24	0.6 (7)
C13—P1—C1—C2	-151.2 (3)	P2-C20-C25-C24	-173.9 (4)
Cu1—P1—C1—C2	81.3 (3)	C30—N1—C26—C27	-0.9 (6)
C6—C1—C2—C3	-0.1 (6)	Cu1—N1—C26—C27	-172.3 (3)
P1—C1—C2—C3	-172.2 (4)	N1—C26—C27—C28	1.0 (7)
C1—C2—C3—C4	0.0 (8)	C26—C27—C28—C29	0.0 (8)
C2—C3—C4—C5	0.2 (9)	C27—C28—C29—C30	-1.0 (8)
C3—C4—C5—C6	-0.3 (10)	C26—N1—C30—C29	-0.2 (6)
C2—C1—C6—C5	0.1 (6)	Cu1—N1—C30—C29	172.1 (3)

P1—C1—C6—C5	172.0 (4)	C26—N1—C30—C31	179.9 (3)
C4—C5—C6—C1	0.1 (8)	Cu1—N1—C30—C31	-7.8 (4)
C1—P1—C7—C8	137.7 (3)	C28—C29—C30—N1	1.1 (7)
C13—P1—C7—C8	-116.2 (3)	C28—C29—C30—C31	-179.0 (4)
Cu1—P1—C7—C8	23.2 (4)	C35—N2—C31—C32	-0.2 (6)
C1—P1—C7—C12	-41.8 (4)	Cu1—N2—C31—C32	179.3 (3)
C13—P1—C7—C12	64.4 (4)	C35—N2—C31—C30	-179.6 (4)
Cu1—P1—C7—C12	-156.3 (3)	Cu1—N2—C31—C30	-0.1 (4)
C12—C7—C8—C9	-0.5 (7)	N1-C30-C31-N2	5.2 (5)
P1C7C8C9	-179.9 (4)	C29—C30—C31—N2	-174.7 (4)
C7—C8—C9—C10	0.1 (8)	N1-C30-C31-C32	-174.1 (4)
C8—C9—C10—C11	0.0 (8)	C29—C30—C31—C32	6.0 (6)
C9—C10—C11—C12	0.2 (8)	N2-C31-C32-C33	-0.9 (7)
C10—C11—C12—C7	-0.6 (7)	C30-C31-C32-C33	178.4 (5)
C8—C7—C12—C11	0.7 (6)	C31—C32—C33—C34	1.4 (8)
P1-C7-C12-C11	-179.8 (3)	C32—C33—C34—C35	-0.9 (8)
C14—P2—C13—P1	-85.4 (2)	C31—N2—C35—C34	0.8 (6)
C20—P2—C13—P1	170.2 (2)	Cu1—N2—C35—C34	-178.6 (3)
Cu1 ⁱ —P2—C13—P1	50.0 (3)	C33—C34—C35—N2	-0.3 (7)
C7—P1—C13—P2	48.3 (3)	C38—O1—C37—C36	175.7 (16)
C1—P1—C13—P2	155.7 (2)	C37—O1—C38—C39	160.8 (17)
Cu1—P1—C13—P2	-88.6 (2)	C38'—O1'—C37'—C36'	-160 (2)
C20—P2—C14—C15	-124.2 (4)	C37'—O1'—C38'—C39'	123 (2)
C13—P2—C14—C15	130.9 (3)		
Symmetry codes: (i) $-x+2$, $-y+1$, $-z$.			

